Three-coloring and list three-coloring of graphs without induced paths on seven vertices

نویسندگان

  • Flavia Bonomo
  • Maria Chudnovsky
  • Peter Maceli
  • Oliver Schaudt
  • Maya Stein
  • Mingxian Zhong
چکیده

In this paper we present a polynomial time algorithm that determines if an input graph containing no induced seven-vertex path is 3-colorable. This affirmatively answers a question posed by Randerath, Schiermeyer and Tewes in 2002. Our algorithm also solves the list-coloring version of the 3-coloring problem, where every vertex is assigned a list of colors that is a subset of {1, 2, 3}, and gives an explicit coloring if one exists. Moreover, we present an independent algorithm that works in the special case when triangles are forbidden in addition to induced seven-vertex paths. Its running time is significantly faster compared to the general case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obstructions for three-coloring graphs without induced paths on six vertices

We prove that there are 24 4-critical P6-free graphs, and give the complete list. We remark that, if H is connected and not a subgraph of P6, there are infinitely many 4-critical H-free graphs. Our result answers questions of Golovach et al. and Seymour.

متن کامل

3-Colouring graphs without triangles or induced paths on seven vertices

We present an algorithm to 3-colour a graph G without triangles or induced paths on seven vertices in O(|V (G)|) time. In fact, our algorithm solves the list 3-colouring problem, where each vertex is assigned a subset of {1, 2, 3} as its admissible colours.

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Coloring Graphs with Forbidden Induced Subgraphs

Efficiently coloring an arbitrary graph is a fundamental and notoriously difficult algorithmic problem. This talk focuses on the restricted problem of determining the complexity of coloring graphs which do not contain a certain induced subgraph. Combining results of Kamiński and Lozin, and Hoyler, it follows that this problem remains NP-complete unless the excluded induced subgraph is a disjoin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015